
PROCEEDINGS, TOUGH Symposium 2006
Lawrence Berkeley National Laboratory, Berkeley, California, May 15–17, 2006

 - 1 -

ENHANCING SCALABILITY AND EFFICIENCY OF THE TOUGH2_MP
FOR LINUX CLUSTERS

 Keni Zhang and Yu-Shu Wu

Earth Sciences Division, Lawrence Berkeley National Laboratory

1 Cyclotron Rd
Berkeley, CA, 94720, USA

e-mail: kzhang@lbl.gov

ABSTRACT

TOUGH2_MP, the parallel version TOUGH2 code,
has been enhanced by implementing more efficient
communication schemes. This enhancement is
achieved through reducing the amount of small-size
messages and the volume of large messages. The
message exchange speed is further improved by using
non-blocking communications for both linear and
nonlinear iterations. In addition, we have modified
the AZTEC parallel linear-equation solver to non-
blocking communication. Through the improvement
of code structuring and bug fixing, the new version
code is now more stable, while demonstrating similar
or even better nonlinear iteration converging speed
than the original TOUGH2 code. As a result, the new
version of TOUGH2_MP is improved significantly in
its efficiency. In this paper, the scalability and
efficiency of the parallel code are demonstrated by
solving two large-scale problems. The testing results
indicate that speedup of the code may depend on both
problem size and complexity. In general, the code has
excellent scalability in memory requirement as well
as computing time.

INTRODUCTION

The TOUGH2_MP code (Zhang et al. 2001, Wu et
al. 2002) was originally developed on the CRAY T3E
and IBM SP supercomputers in 2000. The code has
been applied successfully to solve multi-million
gridblock problems on super-computers (Zhang et al.
2003). However, because of the requirements for
extensive communications during Newton-Raphson
iterations and linear equation solutions, there are still
problems with the parallel-code scalability and
efficiency when run on Linux/PC clusters, which in
general have relatively lower bandwidth or higher
latency.

The TOUGH2_MP code uses the MPI (Message
Passing Forum, 1994) for parallel implementation.
The code partitions a simulation domain, defined by
an unstructured grid, using partitioning algorithm
from the METIS software package (Karypsis and
Kumar, 1998). In parallel simulation, each processor
is in charge of one part of the simulation domain for
updating thermophysical properties, assembling mass
and energy balance equations, solving liner equation

systems, and performing other local computations.
The local linear-equation systems are solved in
parallel by multiple processors with the Aztec linear
solver package (Tuminaro et al., 1999). Data
communication between processors is an essential
component of the parallel code. Although each
processor solves the linearized equations of local- or
subdomains independently, communication between
neighboring processors is necessary to update and
solve the entire equation system during solving the
linear equation systems. Detailed discussion of the
prototype of data-exchange scheme can be found in
Elmroth et al. (2001).

The new version TOUGH2_MP code has been
implemented with more efficient communication
schemes. The enhancements are achieved through
reducing the numbers of small-size messages and
volume of large messages. At each Newton iteration,
the subdomain boundary information exchanges are
limited to primary variables only. All other or
secondary variables are updated using primary
variables locally. The message exchange speed is
further improved by using non-blocking
communications for both linear and nonlinear
iterations. We have also modified the AZTEC
parallel liner-equation solver to non-blocking
communication. As a result, the new version of
TOUGH2_MP is improved significantly in its
computational efficiency. With the improvement in
code structuring and bug fixing, the new version code
is more stable, faster nonlinear iteration converging
speed, and better scalability, when compared to the
previous version. Testing examples show that linear
or super linear speedup can be obtained on both
clusters and supercomputers for most problems.

MATHEMATICAL MODEL AND PROBLEMS
IN PARALLELIZATION

The TOUGH2_MP solves the same equation systems
as those solved by the original TOUGH2 code. The
basic mass- and energy-balance equations solved by
TOUGH2 can be written in the general integrated
form (Pruess et al. 1999):

∫∫∫ κ

Γ

κκ +Γ•=
nnn V

nnn

V

dVqddV
dt

d
nFM (1)

 - 2 -

The integration is over an arbitrary subdomain Vn of
the flow system under study, which is bounded by the
closed surface Γn. The quantity M appearing in the
accumulation term (left hand side) represents mass or
energy per volume, with κ= 1, ..., NK labeling the
mass components (water, air, CO2, solutes, ...), and
 κ= NK + 1 the heat component. F denotes mass or
heat flux (see below), and q denotes sinks and
sources, and n is a normal vector on surface element
dΓn, pointing inward into Vn.

Time and space discritization for Equation (1) results
in a set of coupled nonlinear equations, which can be
written in residual form (Pruess et al., 1999):

0})({

)()()(

1,1

11

=+∆
−−=

++

++

∑ t
nn

t
nm

m
nm

n

t
n

t
n

t
n

qVxFA
V

t

xMxMxR

κκ

κκκ

 (2)

where the vector xt consists of primary variables at

time t, κ
nR is the residual of component κ for block

n, M denotes mass or thermal energy per unit volume
for a component, Vn is the volume of the block n, and
q denotes sinks and sources of mass or energy,

t∆ denotes he current time-step size, t+1 denotes the
current time, Anm is the interface area between blocks
n and m, and Fnm is the flow between them. Equation
(2) is solved by Newton/Raphson iteration, leading to

)x(R)xx(
x

R
p,i

1t,
np,i1p,i

pi i

1t,
n +κ

+

+κ

=−
∂

∂−∑ (3)

where xi,p represents the value of ith primary variable
at the pth iteration step.

The parallel implementation for solving Equation (3)
first partitions the simulation domain. After domain
decomposition, computations (which include
assembling Jacobian matrix, solving linear equations,
and updating thermophysical properties) are done at
the local subdomain by different processors. All
processors involved in solving Equation (3) will
solve similar equation systems for different
subdomains. This property guarantees as large as
possible reuse of sequential TOUGH2 code for
computation parts. Each processor solves only part of
the full modeling domain; and definitely speeds up
the computation. However, the best convergence
performance of Newton iteration can only be
achieved when the local equation systems are solved
simultaneously as partial of the whole system. Doing
so therefore requires intensive and expensive
communications between neighboring processors.

In addition, while the equation system is solved,
communications between processors are needed for
updating border thermophysical properties, collecting
extreme values, conditioning over the whole
simulation domain, and input/output. Equation (2)
shows that only the flow term needs information
from neighboring gridblocks for mass and energy
conservation computation. The mass accumulation
terms, and sink/source terms, are domain
independent. Computations related to the two terms
do not require communication between neighboring
processors.

The efficiency of the TOUGH2_MP depends on code
efficiency in both computation and communication.
Because we use similar computation schemes in the
parallel code, the efficiency of the code is mainly
determined by communication efficiency. In
addition, domain partitioning schemes used in
parallel computing may introduce additional non-
linearity, as shown in the example problems below,
to the global discretized equation for describing a
fully coupled physical system, while handling extra
cross-bound flux terms between partitioned grid
domains. This additional perturbation to the equation
system from parallelization may partially override the
numerical performance benefit from parallel
computing itself, when solving highly nonlinear
problems using non-Newtonian iteration or a less
than fully implicit scheme.

CODE IMPROVEMENT

The parallel code performance can be improved by
improvement in the partitioning algorithm, parallel
computation schemes, and communication efficiency.
A good partitioning algorithm should be able to
balance computation load and communication load,
and minimize communication volume and number of
messages. We use the METIS (Karypsis and Kumar,
1998) software package for domain partitioning. The
package provides three partitioning algorithms, the
K-way, the VK-way, and the Recursive, for
unstructured grid partition. Elmroth (2000) has
provided an in-depth discussion on the performance
of the three algorithms through the prototype of this
code. He concluded that the Recursive outperforms
the other two algorithms in terms of computation
load balance, and VK-way outperforms the other two
algorithms in minimizing the maximum and average
communication volume in terms of number of
external gridblocks required per processor. In
general, the three algorithms produce partitions that
are beneficial from different aspects. Recursive
performs the best work in load distribution up to a
large number of processors, VK-way is best in
minimizing the communication volume, and K-way is
slightly better than the other two in minimizing the
number of messages to be sent during computation.
To achieve better code performance, different

 - 3 -

algorithms may be selected, based on the system
communication bandwidth, latency, and CPU speed
that the code is run at.

Efficiency of the parallel code can be improved
through enhancement of the code communication
performance. Communication volume and message
number are the most important factors that influence
total communication time. In TOUGH2_MP
program, there are three most important type
communications: boundary message exchange at the
end of each Newton iteration, message exchange for
parallel solving of linear equations, conditioning,
gathering, and searching for extreme values.

 At the beginning of each Newton iteration

1. Start communication for primary variables
(in background)

2. Do 1 to LNEL (LNEL: total gridblocks for
current processor)

3. updating secondary variables(EOS)
4. End Do
5. Make sure communication finished
6. Do LNEL+1 to LNEL+extarnal_blocks
7. updating secondary variables(EOS)
8. End Do
9. assembling Jacobian matrix, no

communication needed(MULTI)

Figure 1. Outline of the communication procedure

for boundary message exchange at the end
of each Newton iteration

It is possible to minimize the communication volume
for boundary message exchange at the end of each
Newtown iteration, by introducing some computation
overlapping. Note that TOUGH2 uses two type
variables: the primary thermodynamic variables for
all gridblocks, and all other (secondary)
thermophysical parameters needed to assemble the
governing flow and transport equations. At each
iteration step, primary variables are solved directly
from the equation system, and secondary variables
are then updated based on the new primary variables.
To reduce communication volume, boundary
message exchange is limited to the primary variables
only. Entries of the Jacobian matrix related to the
gridblocks of the internal set are updated using only
the information on the current processor (discussion
of the different gridblock sets can be found at Wu et
al [2002]). The border set, consisting of blocks with
at least one edge to a block assigned to another
processor, requires values from other processors to be
updated. The set of blocks not in the current
processor, but needed to update components in the
border set of current processors, is referred to as an
external set. If only the primary variables are
communicated, secondary variables for the external
set must be updated at the current processor, using

the most updated primary variables of the external
set. This approach may introduce an additional
computation burden with respect to updating
secondary variables for the external set. However, for
most Linux clusters, trading off between computation
and communication may gain obvious efficiency for
the code. A scheme with non-blocking
communication is implemented in the enhanced
version of the code. Figure 1 outlines of the
communication procedure.

Non-blocking communication can improve code
performance on many systems by overlapping
communication and computation. The AZTEC
parallel linear solver has been modified to non-
blocking communication for message exchanges
during solving equations. The most time-consuming
computation for solving linear equations is matrix-
vector multiplication. The multiplication at the
current processor needs the most updated information
for its external blocks from neighboring processors.
The non-blocking communication was implemented
in the code as shown on Figure 2.

 At the beginning of matrix-vector multiplication

1. Start communication (in background)
2. Do 1 to Internal_Blocks
3. M.V
4. End Do
5. Make sure communication finished
6. Do Internal_Blocks+1 to LNEL
7. M.V
8. End Do

Figure 2. Non-blocking communication for the

parallel linear equation solver

Small-size messages are needed to coordinate the
processors involved in parallel solution of a problem.
Reducing the total small-message numbers is an
important factor in improving code performance,
especially on high-latency computer systems. The
most common small messages may include messages
for finding and collecting information. The code
finds global extreme values, performs global
conditioning, and calculates global sums through
reducing and gathering operations. The number of
small messages may be reduced through combination
of several messages into one message. For example,
at the end of each Newton iteration step, the code
needs to check convergence of the iteration. This
requires collecting the maximum residual from all
processors. If the maximum residual is less than the
convergence criterion, the program will proceed to
the next time step. The code also needs to gather
information about the origin of maximum residual
(i.e. from which gridblock and which component).
These different types of messages (real, characters,

 - 4 -

integer) may be combined to one small array for
communication. Another common message is for
collecting values of a variable from all processors.
Then, based on the variable values, the code will
perform different actions. If the action is to exit
program execution, communication may not be
necessary; the program can directly examine
conditions for the variable values at local processors.
If the condition is valid, the processor will inform all
other processors to stop execution.

EXAMPLES FOR SCALABILITY AND
EFFICIENCY INVESTIGATION

The original version of the TOUGH2_MP code had
shown the ability to efficiently use a large number of
processors (as many as 1024 processors) on
supercomputers (Zhang et al. 2003, Wu et al., 2002).
The new version, improved in communication
scheme, is expected to be more efficient on relatively
low bandwidth and high latency systems. Here, we
investigate the scalability and efficiency of the new-
version code through two examples, running on a 32-
processor cluster and a super computer. The two
examples solve unsaturated flow and two phase flow
problems, respectively.

The first example demonstrates simulation of
mountain-scale unsaturated flow for the Yucca
Mountain site. The 3-D model domain was
discretized into 60 computational grid layers and
9,900 blocks per layer. A dual porosity approach was
used to represent the fractured media. The model
consists of 1,075,522, gridblocks and 4,047,209
connections. Detailed discussion of the problem,
including geological layers, model grid, and
boundary conditions, is presented in Zhang et al.
(2003).

Table 1 shows the reduction in execution time as the
number of processors increase. Simulation was run
for 100 time steps, representing a similar
computation load. Because of the automatic time-step
adjustment, based on the convergence rate of the
iteration process, the cumulative length of simulation

time over 100 time steps with a different number of
processors may be slightly different. These
simulations were run under the same conditions,
except for using a different number of processors.

The time reduction is significant with the increase in
numbers of processors. In general, performance of
the code for the two parts, (1) updating
thermophysical parameters and assembling Jacobian
matrix, and (2) solving linear equations; and total
execution shows a linear and super linear speedup.
Note that except for the time for the two-part
computations, total execution time also includes time
for input/output, initialization and others. The table
shows that the parallel performance in solving linear-
equation systems is much better than linear speedup.
Elmroth et al. (2000) provided a theoretical analysis
for this phenomenon and indicated that the super
linear behavior is mainly caused by the performance
of the preconditioner. The time of 64-processor
simulation is that running on a IBM SP super-
computer; it may not be comparable with other
simulation runs because of the platform difference.
However, by comparing to the 32-processor
simulation run, we find that the time reduction for
solving linear equations is more significant than for
updating thermophysical parameters and assembling
Jacobian matrix. This is because updating
thermophysical parameters and assembling Jacobian
matrix is computation dominant; and solving linear
equations require intensive communication. The
cluster has better computation performance and lower
communication speed compared to the super
computer used for the simulation.

Table 1 also shows reduction of the memory
requirement with the increase in processor number.
Doubling the processor number reduces the memory
requirement for each processor by slightly less than a
half. From the point of view of memory requirement,
the 32-processor cluster can perform simulations for
models with several-tens of million gridblocks.

A similar comparison, running the same problem on

Table 1. Comparison of execution time and memory use for 100 time steps using different
numbers of processors on Linux clusters and a supercomputer--cluster cpu: Athlon, 1.7GHz;

super-computer cpu: power 3, 375MHz

Number of processors 2 4 8 16 32 64*
Time for updating

thermophysical parameters and
assembling Jacobian matrix (s)

1458

776

359

205

101

135

Time for solving linear
equations (s)

20100 7588 1921 504 201 87

Total execution time (s) 21804 8583 2486 919 550 554
Memory used by each processor 27.5% 15% 7.8% 4.2% 2.2%

 * running on IBM RS/6000 super-computer

 - 5 -

IBM RS/6000 super-computer using the previous
version code with many more processors, was
reported by Wu et al. (2002). By comparing current
results with the previous data, we can see that the
efficiency with the new version has been improved
significantly.

The second example demonstrates a three-
multidimensional, mountain-scale, thermal-
hydrologic (TH) numerical model for investigating
unsaturated flow behavior in response to decay heat
from the radioactive waste repository in the Yucca
Mountain unsaturated zone (UZ). The model
evaluates the coupled TH processes related to
mountain-scale UZ flow. It also simulates the impact
of radioactive waste heat release on the natural
hydrogeological system, including heat-driven
processes occurring near and far away from the
emplacement tunnels or drifts. Model simulations
predict thermally perturbed liquid saturation, gas- and
liquid-phase fluxes, and water and rock temperature
elevations, as well as the changes in water flux driven
by evaporation/condensation processes and drainage
between drifts.

The model covers approximately 20 km2 of the area
and uses a refined mesh in the vicinity of the
emplacement drifts. The model grid explicitly
incorporates every repository drift by taking into
account their orientations, lengths, elevations, and
spacing. In the model grid, faults are explicitly
represented by vertical or inclined zones of finite
width, and properties for gridblocks within the fault
zones are adjusted to represent specific fault
configurations. The TH model mesh consists of
86,440 gridblocks, and 343,520 connections between

the gridblocks. Detailed discussion of the model
development can be found at Wu et al. (2006). Since
the model involves very complex thermal
hydrodynamics processes, the simulation requires
intensive computation effort. Previous simulation
(Wu et al., 2006) was done using the single CPU
version TOUGH2 for 5000 years, which took several
months to finish. The model was run again with the
same input by TOUGH2 V1.4 and TOUGH2_MP for
a 100-year simulation. Table 2 shows the
performance of the parallel code by comparing to
performance of original TOUGH2 code.

Table 2 shows that the total execution time for the
100-year thermal loading simulation decreases from
188.0 hours with the single CPU version TOUGH2 to
5.77 hours with TOUGH2_MP using 32 processors,
and corresponding memory requirement decreases
from 27% to 0.9%. The computing time reduction is
very significant with the increase in numbers of
processors. Note that the total number of time steps
needed for the simulation is quite different with
different numbers of processors. Moreover, with the
increase in numbers of processors, the average
iterations for solving the linear equation system
increase. This is because the domain decomposition
based process is expected to become less efficient as
the number of processors increases. Further
discussion of this behavior is provided by Elmroth et
al.(2000). Despite the overall increasing number of
iterations in both Newton iteration and linear solver
for increasing numbers of processors, performance of
the parallel code is still very impressive (near linear
speedup).

Table 2. Comparison of performance for 100-year thermal loading simulation using
different numbers of processors

Number of processors 1* 4 8 16 32
Time for updating

thermophysical parameters and
assembling Jacobian matrix (hr)

 6.39 3.20 1.78 1.03

Time for solving linear
equations(hr)

 38.89 16.51 8.73 4.74

Total execution time (hr) 188.0 45.28 19.71 10.51 5.77
Memory used by each

processor
27.5% 4.2% 2.2% 1.3% 0.9%

Total Newton iterations 9544 9033 9352 9886
Total time steps 5417 3364 3131 3464 3901

Average iterations for solving
linear equations

 25.3 28.8 33.6 35.1

* run by TOUGH2 V1.4 with exactly the same input files and same computer

PROCEEDINGS, TOUGH Symposium 2006
Lawrence Berkeley National Laboratory, Berkeley, California, May 15–17, 2006

 - 6 -

CONCLUSIONS

A new version of TOUGH2_MP has been developed,
adding enhancements in communication through
reducing the number of small-size messages and
volume of large messages. The message-exchange
speed is further improved by using non-blocking
communications for both linear and nonlinear
iterations. With the improvement in code structuring
and bug fixing, the new version code is also more
stable. The code demonstrates similar or even better
nonlinear iteration converging speed than the original
TOUGH2 code. As a result, the new version of
TOUGH2_MP has significantly improved efficiency.
The improvement in scalability and efficiency of the
new-version parallel code is demonstrated through
two examples, showing good efficiency and
scalability in both memory requirement and
computing time. It is expected that this code will find
more applications in solving multiple million
gridblock problems, on clusters or supercomputers
with several tens to hundreds of processors.

ACKNOWLEDGEMENTS

The authors would like to thank Lehua Pan and
Yinqgi Zhang for their review of this paper. Thanks
are also due to Greg Kurtzer for the Linux cluster
technical support. This work was supported by the
U.S. Department of Energy. The support is provided
to Berkeley Lab through the U.S. Department of
Energy Contract No. DE-AC03-76SF00098.

REFERENCES

Elmroth, E., On grid partitioning for a high
performance groundwater simulation software,
Engquist et al. (eds), Simulation and Visualization on
the Grid, Springer-Verlag, Berlin, Lecture Notes in
Computational Science and Engineering, No. 13, pp.
221-233, 2000.

Elmroth, E., C. Ding, and Y.S. Wu, High
performance computations for large-scale simulations
of subsurface multiphase fluid and heat flow, The
Journal of Supercomputing, 18(3), pp. 233-256,
2001.

Karypsis, G. and V. Kumar, METIS. A Software
Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices, V4.0. Technical
Report, Department of Computer Science, University
of Minnesota, 1998.

Message Passing Interface Forum, MPI: A message-
passing interface standard, International Journal of
Supercomputing Applications and High performance
Computing, 8(3-4), 1994.

Pruess, K, C. Oldenburg, and G. Moridis, TOUGH2
User’s Guide, V2.0. Lawrence Berkeley National
Laboratory Report LBNL-43134, Berkeley, CA,
1999.

Tuminaro, R. S., M. Heroux., S.A. Hutchinson, and
J.N. Shadid, Official Aztec user’s guide, Ver 2.1,
Massively Parallel Computing Research Laboratory,
Sandia National Laboratories, Albuquerque, NM,
1999.

Wu, Y. S., K. Zhang, C. Ding, K. Pruess, E. Elmroth,
and G. S. Bodvarsson, An efficient parallel-
computing scheme for modeling nonisothermal
multiphase flow and multicomponent transport in
porous and fractured media, Advances In Water
Resources, 25, 243-261, 2002.

Wu, Y.S., S. Mukhopadhyay, K. Zhang, and G. S.
Bodvarsson, A mountain-scale thermal-hydrologic
model for simulating fluid flow and heat transfer in
unsaturated fractured rock, accepted by Journal of
Contaminant Hydrology, 2006.

Zhang, K., Y.S. Wu, C. Ding, K. Pruess, and E.
Elmroth, Parallel computing techniques for large-
scale reservoir simulation of multi-component and
multiphase fluid flow, Paper SPE 66343, Proceedings
of the 2001 SPE Reservoir Simulation Symposium,
Houston, Texas, 2001.

Zhang, K., Y.S. Wu, and G.S. Bodvarsson, Parallel
computing simulation of fluid flow in the unsaturated
zone of Yucca Mountain, Nevada, Journal of
Contaminant Hydrology, 62-63, 381-399, 2003.

